

support@k21academy.com

1

Taint & Tolerations, Ingress-

Controller, Persistent Volumes,

StatefulSet Resource
 [Edition 2]

[Last Update 200920]

For any issues/help contact : support@k21academy.com

support@k21academy.com

2

Contents

1 Introduction3

2 Documentation4
2.1 Kubernetes Documentation4
2.2 Linux Commands and VIM Commands4

3 Previous Guides5

4 Advanced Scheduling with Taint and Tolerations6
4.1 Tainting a Node to Simulate Advanced Scheduling6
4.2 Creating Pod without Toleration6
4.3 Creating a Pod with Toleration7
4.4 Simulate eviction of Pod using NoSchedule effect8

5 Advanced Routing with Ingress-Controller10
5.1 Deploying NGINX Ingress Controller using helm chart10
5.2 Creating simple demo applications11
5.3 Create Ingress Route to route traffic to both the running applications12
5.4 Testing the ingress controller routes correctly to both the application13
5.5 Clean up resources created in this lab exercise14

6 Dynamic Provisioning of Persistent Volumes15
6.1 Built-in storage classes15
6.2 Creating Persistent Volume Claim15
6.3 Use PV in a Pod16
6.4 Clean-up resources created in this lab exercise17

7 Deploying and Managing a StatefulSet Resource18
7.1 Creating Logging namespace18
7.2 Setting up Elasticsearch application18
7.3 Pods in a StatefulSet19
7.4 Scaling up and down a Statefulset object20
7.5 Rolling update StatefulSets21
7.6 Clean Up resources created the lab exercise23

8 Summary24

support@k21academy.com

3

1 INTRODUCTION

Taint and Tolerations

Node affinity, is a property of Pods that attracts them to a set of nodes (either as a preference or
a hard requirement). Taints are the opposite -- they allow a node to repel a set of pods.

Tolerations are applied to pods, and allow (but do not require) the pods to schedule onto nodes
with matching taints.

Taints and tolerations work together to ensure that pods are not scheduled onto inappropriate
nodes. One or more taints are applied to a node; this marks that the node should not accept any
pods that do not tolerate the taints.

Ingress-Controller

In order for the Ingress resource to work, the cluster must have an ingress controller running.

Unlike other types of controllers which run as part of the kube-controller-manager binary,
Ingress controllers are not started automatically with a cluster. Use this page to choose the
ingress controller implementation that best fits your cluster.

This guide Covers:

• Taint and Tolerations

• Advanced Routing with Ingress-Controller

• Dynamic Provisioning of Persistent Volumes

• Deploying and Managing a StatefulSet Resource

support@k21academy.com

4

2 DOCUMENTATION

2.1 Kubernetes

Documentation

1. Taint & Tolerations

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

2. Ingress Controllers

https://kubernetes.io/docs/concepts/services-networking/ingress-controllers

3. Dynamic Volume Provisioning

https://kubernetes.io/docs/concepts/storage/dynamic-
provisioning/#:~:text=Dynamic%20volume%20provisioning%20allows%20storage,to%20repres
ent%20them%20in%20Kubernetes.

4. StatefulSets

https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

2.2 Linux Commands and VIM Commands

1. Basic Linux Commands

 https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners

 https://www.hostinger.in/tutorials/linux-commands

2. Basic VIM Commands

https://coderwall.com/p/adv71w/basic-vim-commands-for-getting-started

3. Popular VIM Commands

https://www.keycdn.com/blog/vim-commands

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://kubernetes.io/docs/concepts/services-networking/ingress-controllers
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/#:~:text=Dynamic volume provisioning allows storage,to represent them in Kubernetes
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/#:~:text=Dynamic volume provisioning allows storage,to represent them in Kubernetes
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/#:~:text=Dynamic volume provisioning allows storage,to represent them in Kubernetes
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://maker.pro/linux/tutorial/basic-linux-commands-for-beginners
https://www.hostinger.in/tutorials/linux-commands
https://coderwall.com/p/adv71w/basic-vim-commands-for-getting-started
https://www.keycdn.com/blog/vim-commands

support@k21academy.com

5

3 PREVIOUS GUIDES

Ensure that you have completed following activity guides:

• Note: Follow Activity Guide
AG_Bootstrap_Kubernetes_Cluster_Using_Kubeadm_Guide_ed** from portal

• Note: Follow Activity Guide AG_ Deploy_App_On_Pod_&_Basic_Networking_ed** from
portal

• Note: Follow Activity Guide
AG_Deploying_Scalable_and_Configuring_Autoscaling_For_Stateless_Application_ed**
from portal

• Note: Follow Activity Guide AG_Configuring_NFS_Storage_Persistence_Volume_ed**
from portal

• Note: Follow Activity Guide
AG_Constraint_Pod_and_Node_Selector_Node_Affinity_&_Anti_Affinity_ed** from portal

• Note: Follow Activity Guide
AG_Cluster_Node_Maintenance_Debugging_Application_Failure_Troubleshooting_Clus
ter_ed** from portal

• Note: Follow Activity Guide
AG_Cluster_Security_Working_With_ConfigMap_&_Limiting_Resources_With_Resourc
e_Quota_ed** from portal

• Note: Follow Activity Guide
AG_Deploying_PHP_Guestbook_Collect_Logs_With_Elk_Stack_Backup_Restore_ETCD
_Cluster_ed** from portal

support@k21academy.com

6

4 ADVANCED SCHEDULING WITH TAINT AND TOLERATIONS

4.1 Tainting a Node to Simulate

Advanced Scheduling

1. View all the nodes in the cluster

$ kubectl get nodes

2. Taint one of the nodes by using its name

$ kubectl taint node aks-agentpool-40017546-vmss000001 disktype=magnetic:NoSchedule

3. Verify that the taint was applied to the desired node

$ kubectl describe node aks-agentpool-40017546-vmss000001 | grep -i "taints"

4.2 Creating Pod without

Toleration

1. View the content of tt-pod.yaml file and create pod using the yaml file

$ vi tt-pod.yaml

support@k21academy.com

7

$ kubectl create -f tt-pod.yaml

2. Verify the pod status. Notice that it was scheduled on the node which is not tainted

$ kubectl get pods -o wide

3. Delete the pod created in this task

$ kubectl delete -f tt-pod.yaml

4.3 Creating a Pod with Toleration

1. View the content of tt-pod1.yaml file and create pod using the yaml file

$ vi tt-pod1.yaml

$ kubectl create -f tt-pod1.yaml

2. Verify the pod status. Notice that it was scheduled on the tainted node

$ kubectl get pods -o wide

support@k21academy.com

8

3. Delete the pod created in this task

$ kubectl delete -f tt-pod1.yaml

4. Delete the taint from the node

$ kubectl taint node <node_name> disktype-
$ kubectl describe nodes <node_name> | grep -i taint

4.4 Simulate eviction of Pod using

NoSchedule effect

1. Again create a pod using tt-pod.yaml file. It doesn’t have any toleration defined

$ kubectl create -f tt-pod.yaml

2. Taint the node on which the Pod was scheduled

$ kubectl get pods -o wide

$ kubectl taint node <node_name> disktype=magnetic:NoExecute

3. Verify the pods status again and see that the pod is evicted

$ kubectl get pods -o wide

support@k21academy.com

9

4. View recent events to see that the pod was evicted due to the taint

$ kubectl get events

5. Delete the pod and taint from the node

$ kubectl delete -f tt-pod.yaml

Note: Pod is already deleted as soon as we tainted the node. So, you will get an error here if
you try deleting the pod manually.

$ kubectl taint node <node_name> disktype-
$ kubectl describe nodes <node_name> | grep -i taint

support@k21academy.com

10

5 ADVANCED ROUTING WITH INGRESS-CONTROLLER

5.1 Deploying NGINX Ingress

Controller using helm chart

1. Create a namespace for your ingress resources

$ kubectl create namespace ingress-basic

2. Add the official stable repository

$ helm repo add stable https://kubernetes-charts.storage.googleapis.com/

3. Use Helm to deploy an NGINX ingress controller

$ helm install nginx-ingress stable/nginx-ingress \

 --namespace ingress-basic \

 --set controller.replicaCount=2 \

 --set controller.nodeSelector."beta\.kubernetes\.io/os"=linux \

 --set defaultBackend.nodeSelector."beta\.kubernetes\.io/os"=linux

4. Verify the helm chart is installed

$ helm list --namespace ingress-basic

support@k21academy.com

11

5. Verify that the load balancer service is created for the NGINX ingress controller and a dynamic
public IP address is assigned to it

$ kubectl get service -l app=nginx-ingress --namespace ingress-basic

5.2 Creating simple demo

applications

1. View the content of ingress-app1.yaml file and see the definition of first application and its
service in the file

$ vim ingress-app1.yaml

2. View the content of ingress-app2.yaml file and see the definition of second application and its
service in the file

$ vim ingress-app2.yaml

support@k21academy.com

12

3. Create the deployment and services resources from both the files created above:

$ kubectl create -f ingress-app1.yaml -n ingress-basic

$ kubectl create -f ingress-app2.yaml -n ingress-basic

5.3 Create Ingress Route to route

traffic to both the running

applications

1. View the ingress-route.yaml file and see the rules defined in the file to route the traffic to both
the applications

$ vim ingress-route.yaml

support@k21academy.com

13

2. Create the ingress resource from ingress-route.yaml and verify using kubectl get command

$ kubectl create -f ingress-route.yaml -n ingress-basic

$ kubectl get ingress -n ingress-basic

5.4 Testing the ingress controller

routes correctly to both the

application

1. Open a web browser to the IP address of your NGINX ingress controller, EXTERNAL_IP. The
first demo application should be displayed in the web browser,

support@k21academy.com

14

2. Open a web browser to the IP address of your NGINX ingress controller with /hello-world-
two path, EXTERNAL_IP /hello-world-two path. The second demo application should be
displayed in the web browser,

5.5 Clean up resources created in

this lab exercise

$ helm uninstall nginx-ingress --namespace ingress-basic

$ kubectl delete namespace ingress-basic

support@k21academy.com

15

6 DYNAMIC PROVISIONING OF PERSISTENT VOLUMES

6.1 Built-in storage classes

1. List the built-in storage classes in Azure AKS cluster

$ kubectl get sc

6.2 Creating Persistent Volume

Claim

1. Verify the content of pvc.yaml file. The claim requests a disk named oracle-managed-disk that
is 1GB in size with ReadWriteOnce access. The managed-premium storage class is specified
as the storage class.

$ vim pvc.yaml

support@k21academy.com

16

$ kubectl create -f pvc.yaml

2. Check the status of newly created pvc and see that dynamically a pv is created and bounded

$ kubectl get pvc

6.3 Use PV in a Pod

1. The persistent volume claim has been created and the disk is successfully provisioned, a pod
can be created with access to the disk. Check the content of pod-dynamicpv.yaml file

$ vim pod-dynamicpv.yaml

2. Create the pod using apply command

$ kubectl apply -f pod-dynamicpv.yaml

support@k21academy.com

17

3. Watch the creation of pod with -w option

$ kubectl get pods -w

4. Describe the pod and see that the volume details are mentions in pod specification

$ kubectl describe pod mypod

6.4 Clean-up resources created in

this lab exercise

$ kubectl delete -f pvc.yaml

$ kubectl delete -f pod-dynamicpv.yaml

support@k21academy.com

18

7 DEPLOYING AND MANAGING A STATEFULSET RESOURCE

7.1 Creating Logging namespace

1. Viewing the contents of namespace.yaml file to create kube-logging namespace

$ vim namespace.yaml

2. Creating namespace from above file

$ kubectl create -f namespace.yaml

3. Confirm that the Namespace was successfully created by listing all the namespace present in
the cluster

$ kubectl get ns

7.2 Setting up Elasticsearch

application

1. Create the Elasticsearch StatefulSet using elasticsearch-stfullset.yaml file. Run through the
content and create the resource

support@k21academy.com

19

$ vim elasticsearch-stfullset.yaml

$ kubectl create -f elasticsearch-stfullset.yaml

2. Verify the creation of StatefulSet Elasticsearch pods. monitor the StatefulSet as it is rolled out
using kubectl rollout status

$ kubectl rollout status sts/es-cluster --namespace=kube-logging

$ kubectl get sts --namespace=kube-logging

$ kubectl get pods --namespace=kube-logging

7.3 Pods in a StatefulSet

1. Pods in a StatefulSet have a unique ordinal index and a stable network identity.

Each Pod has a stable hostname based on its ordinal index. Use kubectl exec to execute
the hostname command in each Pod. Let’s examine the pods

$ kubectl config set-context --current --namespace=kube-logging

$ kubectl get pods

for i in 0 1 2; do kubectl exec es-cluster-$i -- sh -c 'hostname'; done

https://kubernetes.io/docs/reference/generated/kubectl/kubectl-commands/#exec

support@k21academy.com

20

7.4 Scaling up and down a

Statefulset object

1. Scaling up the replicas from 3 to 4 for sts es-cluster. The StatefulSet controller scales the
number of replicas.

$ kubectl scale sts es-cluster --replicas=4

2. The StatefulSet controller creates each Pod sequentially with respect to its ordinal index, and it
waits for each Pod’s predecessor to be Running and Ready before launching the subsequent
Pod

$ kubectl rollout status sts/es-cluster

$ kubectl get pods

3. Scaling down the replicas from 4 to 2 for sts es-cluster. The StatefulSet controller scales the
number of replicas.

$ kubectl scale sts es-cluster --replicas=2

support@k21academy.com

21

4. The controller deletes one Pod at a time, in reverse order with respect to its ordinal index, and
it waits for each to completely shut down before deleting the next.

$ kubectl rollout status sts/es-cluster

$ kubectl get pods

7.5 Rolling update StatefulSets

1. The RollingUpdate update strategy will update all Pods in a StatefulSet, in reverse ordinal
order, while respecting the StatefulSet guarantees.

2. Edit the StatefulSet to update the new image version of Elasticsearch elasticsearch:7.5.0

$ kubectl edit sts es-cluster

support@k21academy.com

22

3. Verify the updation of StatefulSet Elasticsearch pods. Monitor the StatefulSet as it is rolled out
using kubectl rollout status

$ kubectl rollout status sts/es-cluster

$ kubectl get pods -w

4. Verify the image version with describe command

$ kubectl describe sts es-cluster | grep Image

support@k21academy.com

23

7.6 Clean Up resources created the

lab exercise

$ kubectl delete ns kube-logging

$ kubectl config set-context --current --namespace=default

support@k21academy.com

24

8 SUMMARY

In this guide we Covered:

• Taint and Tolerations

• Advanced Routing with Ingress-Controller

• Dynamic Provisioning of Persistent Volumes

• Deploying and Managing a StatefulSet Resource

